Автомобили

Система VTEC SOHC, работа на пальцах

Увеличение времени и высоты открытия клапанов – это простой способ повысить мощность атмосферного силового агрегата. Благодаря незначительному внесению изменений в конструкцию газораспределительного механизма – установке распредвала с измененной геометрией кулачков, обеспечивается улучшенное наполнение цилиндров топливовоздушной смесью, а соответственно – и выход мощности.

Но на деле не все просто – максимальная мощность нужна на высоких оборотах, при средней же и малой нагрузке на двигатель увеличенное время открытия клапанов приводит к снижению тяги и перерасходу топлива. Поэтому автопроизводители при разработке двигателей подбирают геометрию кулачков распределительного вала так, чтобы работа ГРМ обеспечивала функционирование двигателя на всех режимах.

Решение сложившейся ситуации с ГРМ предложили конструкторы Honda и внедрили его на силовые агрегаты, которыми комплектуют автомобили. Японцы разработали систему электронного изменения хода и времени открытия клапанов, которую обозначили аббревиатурой VTEC. Она позволяет регулировать газораспределение в зависимости от режима функционирования мотора, что обеспечивает максимальный выход мощности на высоких оборотах и при этом не влиять на расход топлива и тяговое усилие при средней и малой нагрузке.

VTEC – проста по конструкции, но эффективна и доказательством тому тот факт, что атмосферные двигатели автомобилей Honda по мощностным показателям не уступают турбированным.

VTEC – разработка не новая, ее конструкторы Honda разработали и внедрили более 25 лет назад и используют сейчас. При этом по мере усовершенствования моторов модернизировалась и VTEC – она применима на моторах с системой газораспределения DOHC и SOHC. Honda применяет VTEC на авто и на мотоциклах.

Общая концепция

Чтобы разобраться, что такое VTEC, рассмотрим, чем отличаются обычный и спортивный распредвалы. Конструктивно оба валы одинаковы, но у последнего высота кулачков больше, чем у обычного, а геометрия их – более плавная. За счет такой формы кулачков спортивные распредвалы обеспечивают лучшее наполнение цилиндров из-за увеличенных времени и высоты открытия клапанов.

VTEС совмещает в себе конструктивные особенности простого и спортивного распредвалов, что позволяет автоматически регулировать фазы газораспределения в зависимости от условий работы мотора. На малых оборотах система задействует кулачки с обычной геометрией, поэтому экономно расходуется топливо, а на высоких – с увеличенной высотой, обеспечивая максимальный выход мощности.

Конструктивные особенности

Рассмотрим, что такое ВТЕК на Хонде на примере двигателя с системой ГРМ DOHC, поскольку на этом моторе она впервые начала использоваться и является конструктивно самой простой. Особенность этого газораспределительного механизма — применение 4 клапанов на каждый цилиндр (по паре впускных и выпускных, работающих синхронно) и двух распредвалов, каждый из которых отвечает за открытие своих клапанов.

Принцип действия включения рокера VTEC

Выключение рокера VTEC

VTEC на этом двигателе имеет два режима работы и подразумевает использование трех кулачков на пару клапанов (как впускных, так и выпускных), вместо двух. Третий кулачок – с увеличенной высотой и плавной геометрией (повторяет форму кулачка спортивного распредвала) и размещен он между двумя обычными.

Крайние кулачки (с обычной формой) воздействуют на клапаны не напрямую, а через рокеры, коромысла, толкатели (в зависимости от конструкции ГРМ). У центрального кулачка тоже есть рокер (коромысло), но они никакого воздействия на клапаны не имеют. Зато в них проделан масляный канал и установлены выдвигающиеся штифты, которые заходя в специальные углубления крайних рокеров (кромысел), соединяют между собой рокеры и обеспечивают их синхронное движение.

Масляный канал, проделанный в осях рокеров и центральном рокере, оснащен клапаном-соленоидом, управляемым ЭБУ мотора, что позволяет контролировать подачу масла, которое подаётся в VTEC.

Принцип работы

Как работает VTEC

При работе двигателя на малых и средних оборотах ЭБУ «держит» закрытым клапан-соленоид, давление масла в каналах рокеров отсутствует, и открытие клапанов осуществляется от кулачков с обычной геометрией. Центральный же кулачок воздействует на рокер (коромысло), но поскольку они не связаны с крайними рокерами, то он работает «вхолостую».

При достижении определенных оборотов коленчатого вала, ЭБУ открывает соленоид и масло под давлением подается в каналы, затем поступает в полость центрального рокера (коромысла) и выталкивает из посадочных мест штифты. Эти штифты выдвигаясь, попадают в проточки крайних рокеров. Благодаря этому, рокеры получаются соединенными и двигаются синхронно, как единая конструкция. При этом, поскольку высота центрального кулачка больше, чем боковых, он начинает «задавать» движение рокерам, что и обеспечивает большее время и высоту открытия клапанов.

Одновременно с переходом на использование центрального кулачка распредвала ЭБУ корректирует работу впуска, подавая в цилиндры больше топлива, и как итог повышая мощность.

После снижения оборотов до средних ЭБУ закрывает соленоид, рокеры разъединяются и открытие клапанов снова происходит от боковых кулачков с обычной геометрией.

VTEC конструкторами Хонда постоянно совершенствуется, поэтому помимо DOHC VTEC она включает в себя несколько видов с разными конструктивными особенностями.

SOHC VTEC

Конструкция VTEC на двигателях с газораспределительным механизмом SOHC отличается от DOHC. В этом ГРМ используется только один распредвал, который приводит в действие впускные пары клапанов цилиндра и выпускные. Из-за этого установка по три кулачка на каждую пару привела бы к увеличению длины вала, а соответственно и головки блока. Дополнительно невозможность использования VTEC на выпускных клапанах обусловлена тем, что между ними проходит свечной колодец. Поэтому конструкторы Хонда на двигателях SOHC применили VTEC только на впускных.

Что касается функционирования, то у SOHC VTEC принцип работы не отличается от DOHC VTEC.

VTEC-E

Следующим этапом развития стала VTEC-E на тех же моторах SOHC. Конструкторы сделали ставку на максимальную экономичность двигателя. И сделано это было путем уменьшения высоты профиля одного из боковых кулачков. В результате, при малых нагрузках впускные клапаны открывались на разную высоту (один оставался почти закрытым), что позволило использовать на этом режиме функционирования мотора обедненную смесь. После же задействования соленоида оба открывались на одинаковую высоту.

Вас также заинтересует:

SOHC VTEC 3-stage

SOHC VTEC 3-stage отличается наличием трех режимов работы, что позволило подстраивать функционирование ГРМ под рабочие условия мотора. Конструкторы в этом виде совместили SOHC VTEC и VTEC-E, что и позволило получить три режима работы:

  1. Малые обороты коленвала. При таком режиме система копирует работу VTEC-E – из двух впускных открывается только один, который обеспечивает высокую экономичность мотора;
  2. Средняя нагрузка. При достижении таких рабочих условий включается в действие второй впускной.
  3. Высокие обороты. На этом режиме открытием клапанов начинает «заведовать» центральный кулачок с высоким профилем.

Трехрежимная работа VTEC реализована путем установки дополнительного клапана-соленоида. В результате открытием первого осуществляется подключение второго впускного клапана, а задействованием второго – переход на работу клапанов с высокопрофильным кулачком.

Современные разработки

Последующие модификации – i-VTEC серий «K», «R» и «J», AVTEC и VTEC Turbo реализованы на основе SOHC VTEC 3-stage, но они дополнительно функционируют с другими системами – изменяемых фаз газораспределения, отключения части цилиндров, турбонаддувом, непосредственного впрыска. Такая комбинация позволила конструкторам Хонда добиться еще лучших рабочих показателей силовых установок.

Видео: Как работает система HONDA V-TEC

Как работает VTEC система: расположение и типы

Система VTEC — The Variable Valve Timing and Lift Electronic Control, электронно-управляемая система фазы клапанов, ее наличие обусловлено моделью двигателя, а именно моделью ГБЦ, соленоидами подачи масла и блока управления двигателям ECU с распределенным впрыском. На нижнем изображении показано место на ГБЦ, где находятся соленоиды VTEC, отвечающие за включение рокера с большим ходом. На втором изображении показано, где находится VTEC — бочонок соленоида говорит о том, что в двигателе установлен VTEC. Существуют разновидности одновальной SOHC системы VTEC, к сожалению, вторая система DOHC VTEC не устанавливалась на моторах серии D D14, D15, D16. Сопротивление клапана соленоида VTEC 14-30ом, при 12 Вольт.

Вид соленоида двустэйжевой системы VTEC

Место расположения соленоида на блоке ГБЦ Honda Civic

Что такое VTEC, как работает VTEC, смысл системы

По простому, электронно-управляемая система фазы клапанов, или просто VTEC. достаточно понять пару основ для чего она нужна и все встанет на своим места. Обычный 4х тактный двигатель, тянет воздух из атмосферы при давление в 1 бар, тоесть примерно 760ммрт (Так же это 1 атмосфера или 101кПа). С увеличением оборотов, возрастает и скрость движения поршня. На низких оборотах поршень засасывает воздух максимально чисто на сколько возможно, тоесть поршень медленно опускаясь засывает объем с давелнием в 1 атмосферу. С увеличением скорости поршня, давление снижается, тк уже не хватает времени чтобы воздух был при нормальных условиях. Вы наверное видели графики с диностенда, где пиковая мощность около 5000-6000 оборотов, а дальше линия мощности падает. Это потому что двигатель не может засосать воздуха больше, он на столько разрежен (тоесть молекул воздуха мало) что становиться трудно раскрутить мотор. Вариантов решения много, убрать сопротивление воздуха путем установки нулевого фильтра, холодного впуска, увеличением диаметра дроселя, портирование каналов впуска или нагнетать воздух под давелнием. Но, Honda придумала свой способ. При достижение критической точки достижения мотора мощности (примерно 5500 оборотов), включается система VTEC на впускных клапанах, которая держит клапана немного дольше открытыми чем обычно, что дает дополнительное время на "всос" воздуха. теперь мертвая точка смещается в диапазон 7000. Любая работа с впускной системой типа портинга дает прибавку к мощности на верхах но может отнять очки по тяге на низах, так как момент так же смещается на более выскокие обороты, до которых еще надо расскрутить двигатель, воздуха очень много. что делать? душить двигатель на низах, уменьшийть пропускаемость воздуха к примерну уменьшив диаметр дроссельной заслонки. Наверное вы слышали что 8 клапанный двигатель на низах имеет больший потенциал чем 16 клапанный. Вот это тоже самое. Инженеры Honda придумали систему ECO-VTEC, принцип работы которого не просто сохранить топливо а еще и "задушить" двигатель до 2500 оборотов (примерно) чтобы вытащить максимальную тягу, при работе всего 12 клапанов. В сумме получается, что при полном VTEC 3-Stage, низы задушенны и имеют хороший момент, далее работа в нормальном 16 клапанном режиме, и активация на высоких оборотах уже VTEC чтобы воздуха попало больше. Вот и все что нужно знать из азов по VTEC.

Принцип работы VTEC

Покажу на примере самого известного и простого анимационного изображения, объясняющего принцип работы VTEC. По достижению давления масла в двигателе, а также достижению оборотов, обычно 5500 RPM за счет соленоида открывается клапан VTEC, который подает масло в систему газораспределения.

Анимационная демонстрация части работы системы VTEC

Давления масла толкает "защелки" рокеров, которыми блокируется основные и средний рокер. Теперь клапаны открываются глубже — дольше. В этот же момент в блоке управления двигателем мозге ECU переключаются топливные карты и карты зажигания. За счет обогащенной смеси и более длительного открытия клапанов появляется более мощный импульс для толкания поршня.

Принцип действия включения рокера VTEC

Длительность открытия клапана VTEC

Как вы понимаете, длительность открытия клапана VTEC зависит от оборотов двигателя RPM. Примерно на 5500 оборотах VTEC включается, при 4600 (примерно) VTEC выключается. На автоматической коробке до 4 передачи включение VTEC составляет не более 5 секунд, система автоматизирована и при достижении оборотов и скорости переключает передачу, а значит, сбрасывает обороты RPM. По времени работы системы VTEC это всего несколько секунд, но именно они дают настоящий прирост. Втек не включается на нетралке, и режиме парковки в автомате и вараторе.

VTEC 3-Stage: что это такое

Наконец я расскажу о системе VTEC 3-Stage, (3 стейдж). Данная система установлена так же в ГБЦ, устанавливалась после 1996 года. Имеет 2 соленоида. Управляется 12вольтами, при подаче открывается клапан подачи масла, если есть конечно давление масла. Ставился на JDM моторе D15B, одновальной SOHC, и конечно не B серии. Вещь довольно интересная и пользуется спросом. Имеет 3 стадии, совмещает все режимы работы всех видов SOHC D серии. ECU были нескольких типов, но только OBD2 серии, ниже список всех ECU p2j 3-Stage

  • OBD2A 37820-P2J-J62 Вариатор
  • OBD2A 37820-P2J-J63 Вариатор
  • OBD2A 37820-P2J-J61 Вариатор​
  • OBD2A 37820-P2J-003 Механика
  • OBD2B 37820-P2J-J11 Механика
  • OBD2B 37820-P2J-J81 Вариатор от Vi-RS
  • OBD2B 37820-P2J-J71 Вариатор

VTEC 3-Stage: Автомат

В 6 поколление, с которого пошел 3-Stage VTEC, были комплектации только с механической и вариаторной коробкой передач. Но в 7 поколение с 2001 по 2003 год, на моторы 1.6 так-же устанавливалась голова P2J (PLL), и управлялась соответственно мозгом 37820-PLL-D52. Мотор 3-Stage VTEC назывался D16W9 и имел мощность 130лсю

VTEC 3-Stage: принцип работы

Как работает VTEC 3-Stage, первая стадия начинается от 0 RPM и заканчивается в 4000 RPM. в этой стадии ГБЦ работает как VTEC-E. Работает только 12 клапанов. в каждом цилиндре работает два выпускных клапана но только один впускной. Это позволяет делать экономичный и плавный разгон.
Следующая стадия, это работа всех 16 клапанов. Включается первый VTEC соленоид. Обычный режим, работает от 4000 до 6000
Последняя третья стадия, включается второй клапан, впускные клапана открываются на больший период, что позволяет дать больше топливной смеси. Работа от 6000 и до конечной точки работы
Отключается вся система в обратном порядке, сначала 2й соленоид, потом 1 соленоид.

Пора за работу

Теперь когда вы знаете как работает VTEC пора его ставить на свой D14A3 или D14A4, предлагаю воспользоваься переводом статьи DoDo Joris, которой пользовался я, либо воспользоваться моей статьей об установке VTEC. Тем неменее, удачи в ваших экспериментах.

Случайная статья узнай что то новое

Данная статья актуальна для автомобилей Honda выпуска 1992-2000 годов, таких как Civic EJ9, Civic EK3, CIVIC EK2, CIVIC EK4 (частично). Информация будет актуальна для владельцев Honda Integra в кузовах DB6, DC1, с моторами ZC, D15B, D16A.

  • Автоэкзотика — 1 мая
  • Jap Days — 22 Июня
  • JAP CAR FEST — 19-21 июля

Вот наглядное объяснение об устройстве японских двигателей VTEC Honda.

Если вы автолюбитель вы вероятно слышали термин «VTEC», но возможно не знаете, что он означает в автопромышленности. Если это так, то для вас есть интересное объяснение об устройстве этого типа двигателей, которые производят компания Хонда.

VTEC — это двигатель с регулируемой системой газораспределения. Например, эту систему использует компания Honda в своих двигателях. VTEC — это сокращенное название (аббревиатура) Variable valve Timing and lift Electronic Control.

В мире существует множество различных систем с изменяемой системой газораспределения (изменяется ход и времени движения клапанов).

По сути, VTEC — это технология, которая использует впускные и выпускные клапана двигателя, контролируя объем (и скорость) газов, которые входят в цилиндры и выходят из них. Латинская буква «V» в названии мотора Хонда означает Variable valve (изменяемые клапана).

В большинстве обычных двигателей ход клапанов как правило имеет стандартный размер. В двигателях VTEC клапана могут менять свой ход между различными уровнями.

Система VTEC изменяя давление масла позволяет переключаться между различными профилями кулачков, толкающие клапана силового агрегата. Например, при более высоких оборотах двигателя кулачковые профиль позволяет увеличить подъем клапанов. Это позволяет подавать в цилиндры двигателя больше кислорода, в результате чего генерируется больше лошадиных сил.

Двигатели VTEC появились в конце 1980-х годов. С тех пор компания Хонда использовала эти силовые агрегаты на многих своих автомобилях, включая NSX, Integra Type R, S2000 и Civic Type R.

Кстати, двигатели Хонда с изменяемой системой газораспределения отличается от таких же моторов других компаний.

Так, большинство других производителей для изменения фазы газораспределения используют повышенное давление масла и изменение угла распредвала относительно шкива, что позволяет выставлять системе определенное зажигание (раннее, позднее, среднее). Система VTEC от Хонда же использует совершенно другой принцип работы системы газораспределения.

Объяснение этого процесса одними словами недостаточно. Лучше всего, конечно, если посмотрите несколько роликов, объясняющих что же это за двигатели Хонда с системой VTEC.

Устройство и принцип действия автомобильных технологий, узлов и агрегатов

VTEC, Variable valve Timing and lift Electronic Control: система электронного управления фазами газораспределения и подъемом клапанов фирмы Honda, разновидность технологий VVL и CVVL. В последних версиях включает в себя технологии VTC (разновидность технологий CVVT) и VCM.

Технология VTEC была разработана инженером Ikuo Kajitani и выпущена на рынок в 1989 году на модели Honda Integra XSi (двигатель B16).

Принцип действия VTEC

Система VTEC обеспечивает работу клапанов двигателя в различных режимах (с различной высотой подъема и степенью перекрытия фаз), в зависимости от оборотов и с автоматическим переключением между режимами.

Все двигатели с системой VTEC, независимо от их вида (DOHC, SOHC) имеют два впускных клапана и два выпускных на каждый цилиндр. На каждую пару клапанов приходится 3 кулачка – два обычных крайних и один центральный:

Примерно до 5500 об/мин работают только крайние кулачки через свои коромысла. Среднее коромысло тоже движется, но на клапана не действует (VTEC отключен). При дальнейшем росте оборотов по команде блока управления штифт (sinchronizing pin), сдвигаясь под давлением масла, замыкает между собой все три коромысла. Теперь они составляют единое среднее коромысло, на которое воздействует только средний кулачок. В результате высота подъема клапанов, а вместе с ней и ширина фаз возрастает, обеспечивая лучшее наполнение и очистку цилиндров.

Разновидности VTEC

  • DOHC VTEC 1989-2001гг, cамый мощный в семействе VTEC до 2001 года
  • SOHC VTEC 1991-2001гг, попроще и послабже
  • SOHC VTEC-E 1991-2001гг, самый экономичный VTEC, лишен взрывного характера
  • 3-stage VTEC 1995-2001гг, трехрежимный гибрид SOHC VTEC и VTEC-E
  • DOHC i-VTEC c 2001 года
  • DOHC i-VTEC I c 2001 года
  • SOHC i-VTEC c 2006 года
  • 3-stage i-VTEC (только на «гибридах») c 2006 года

Разница между реализацией технологии VTEC на двигателях DOHC и SOHC в том, что на DOHC система VTEC используется и на впуске и на выпуске, а на одновальной SOHC только на впуске.

Варианты с приставкой «i» (Inteligent VTEC или i-VTEC) появились в начале 2001 года вместе с 7-м поколением Honda Civic и применяются до настоящего момента.

Конструкция системы VTEC

Кулачки распредвала VTEC:

Слева рокеры, справа группа кулачков (над рокерами):

DOHC VTEC

«Классический» VTEC, как описано выше. Создавался с целью резкого увеличения удельной мощности двигателя на высоких оборотах. Впервые появился в Японии в 1989 году на модели Integra XSi с двигателем серии B16A. Одновременно в Европе поступила в продажу Honda CRX 1.6i-VT с двигателем B16A1. В США VTEC впервые появился в 1991 году на Acura NSX с двигателем DOHC VTEC V6 (3 литра, 270 кобыл).

SOHC VTEC

Упрощенная версия VTEC, работающая только на впускных клапанах, т.к. свечи зажигания на таких двигателях расположены между двумя выпускными клапанами, делая невозможным размещение нескольких профилей кулачков.

Эта система имеет ряд технологических преимуществ: простоту конструкции, компактность двигателя за счет его незначительной ширины, меньший вес. Кроме того, SOHC VTEC намного легче использовать для модернизации двигателей предыдущих поколений.

SOHC VTEC-E

Создавался с целью экономии топлива (приставка «E» — econom»). Двигатели этого типа отличаются прекрасной экономичностью, но начисто лишены драйва. На малых оборотах такие двигатели работают на обедненной топливо-воздушной смеси, поступающей в цилиндры только через один впускной клапан, т.е. один из двух кулачков на низких оборотах попросту отключен. Такое решение обеспечивает интенсивное завихрение смеси, благодаря чему сгорание становится более эффективным и устойчивым. При росте оборотов выше 2500 подключается второй клапан, двигатель становится «обычным» и выходит из режима экономии.

3-stage VTEC-E

Представляет собой трехрежимный гибрид систем SOHC VTEC и SOHC VTEC-E.

  • В зоне низких оборотов система обеспечивает экономичный режим работы двигателя на обедненной топливо-воздушной смеси. В этом случае используется только один из впускных клапанов.
  • На средних оборотах в работу включается второй клапан, но фазы газораспределения и высота подъема клапанов не изменяются. Двигатель в этом случае реализует высокий крутящий момент.
  • На высоких оборотах оба клапана управляются одним центральным кулачком, что обеспечивает максимальную удельную мощность.

Принцип действия VTC

VTC, Variable Timing Control: технология изменения фаз (фазовращения) за счет доворота впускного распределительного вала относительно выпускного с помощью давления масла. Дебют технологии состоялся в 2001 году (на рынке США — в 2002-м).

При высоких оборотах времени на открытие-закрытие клапанов значительно меньше, хотя топливо-воздушной смеси нужно подавать больше. Система VTC позволяет доворачивать распредвал для более раннего открытия клапанов. Это помогает более эффективно продувать цилиндры и таким образом создает «благоприятные условия» для эффективной работы VTEC.

В отличие от VTEC, режимы которой переключаются на фиксированных оборотах, VTC работает постоянно и непрерывно, регулируя момент открытия впускных клапанов в зависимости от нагрузки на двигатель.

Исполнительная часть системы VTC интегрирована в шкив впускного распредвала. Если обычный шкив это цельная конструкция, один кусок металла, то шкив VTC состоит из нескольких частей.

Одна из частей — корпус шкива VTC, который жестко закреплен цепью ГРМ со шкивами выпускного и коленчатого валов. Другая часть — лопатка шкива VTC, она имеет свободный ход внутри шкива VTC и жестко закреплена с впускным распредвалом. Полость внутри корпуса шкива VTC, в которой лопатка имеет свободный ход, заполнена моторным маслом. Подвод масла в полость шкива организована с двух сторон от лопатки. Таким образом, подавая давление масла в одну из сторон мы крутим лопатку в другую сторону. А перемещение лопатки напрямую воздействует на распредвал с кулачками и, как следствие, изменяет угол положения впускных кулачков относительно выпускных.

Роль управляющего в этом процессе играет соленоид VTC. Получая данные о нагрузке на двигатель с блока управления (ECU), соленоид направляет давление масла в одну из сторон.

К соленоиду VTC под определенным давлением подведено моторное масло. Внутри соленоида происходит разделение направления масла на два канала — назовем их условно красный канал и желтый канал. Оба канала ведут от соленоида к полости шкива VTC, в котором, как сказано выше, лопатка шкива имеет свободный ход. Красный канал подведен с одной стороны лопатки, а желтый — с другой.

Угол перекрытия (перекрытие клапанов) – это угол положения впускных клапанов относительно выпускных (момент времени), при котором впускные и выпускные клапаны одновременно открыты. В зависимости от условий работы двигателя соленоид направляет давление масла либо в красный, либо в желтый канал, заставляя лопатку смещаться в одну или другую сторону.

На холостых и низких оборотах (при малой нагрузке) система VTC доводит угол перекрытия клапанов до минимума, чтобы двигатель работал стабильно. При увеличении нагрузки система плавно увеличивает угол перекрытия. На высоких оборотах (при большой нагрузке) система доворачивает распредвал (увеличивает угол перекрытия) до максимально возможного уровня. Величина угла перекрытия клапанов зависит от модели двигателя и, как правило, находится в пределах 25-50 градусов.

DOHC i-VTEC

DOHC i-VTEC имеет два подвида, основанные на предыдущем поколения VTEC:

  • DOHC i-VTEC: DOHC VTEC + VTC, VTEC на впуске и выпуске, порог высокооборотного режима — 5800 об/мин.
  • DOHC i-VTEC I: SOHC VTEC-E + VTC + «не-VTECовый» (стандартный) выпускной распредвал, порог режима — 2500 об/мин.

VTC у обоих систем стоит на впускном распредвале. По большому счету префикс «i» в названиях системы как раз подразумевает наличие VTC.

DOHC i-VTEC I

Принцип действия DOHC i-VTEC I точно такой как и у VTEC-E первого поколения. Отличие лишь в том, что в DOHC i-VTEC I два распредвала — впускной с VTEC-E и стандартный выпускной. Если DOHC i-VTEC настроен на максимальную производительность, то главная задача для DOHC i-VTEC I — экономия топлива при «достойной тяге».

Суть системы в том, что на малых оборотах двигатель работает на обедненной топливо-воздушной смеси, которая поступает в его цилиндры только через один впускной клапан (превращая 16-клапанный 4-х цилиндровый двигатель в 12-ти клапанный). Если у DOHC i-VTEC применяется дополнительный третий кулачок, то в случае с DOHC i-VTEC I один из двух кулачков на низких оборотах попросту отключен. Попадая в цилиндр только через один клапан, рабочая смесь начинает интенсивно завихряться, благодаря чему сгорание становится более эффективным и устойчивым. При увеличении оборотов (2500 об/мин и выше) оба клапана начинают совместную работу.

SOHC i-VTEC

Принцип работы i-VTEC отдаленно напоминает традиционный VTEC, но фазорегуляция построена совершенно иначе. Например, DOHC i-VTEC работает в паре с системой VTC, тогда как одновальный i-VTEC работает в одиночку. Рассмотрим вопрос на примере двигателей R-серии, в частности мотора R18A, который появился в 2006 году на Honda Civic и стал первым носителем новой системы SOHC i-VTEC.

Дроссельная заслонка — элемент впускной системы, которая регулирует подачу воздуха в двигатель и управляется педалью газа. В зависимости от количества поступаемого воздуха, электронная система управления двигателем в нужной пропорции подает топливо для образования топливно-воздушной смеси. Чем сильнее нажимаете на педаль газа, тем шире открывается дроссельная заслонка (увеличивается поперечное сечение впускного канала), которая в закрытом состоянии является препятствием для прохождения воздуха.

По идее, такое поведение дроссельной заслонки способствует экономии топлива — поступает меньше воздуха и соответственно компьютер уменьшает дозу подаваемого топлива. Однако это не совсем так. В такой ситуации дроссельная заслонка выступает в качестве силы сопротивления, препятствуя прохождению воздуха, когда этого требует рабочий процесс. Получается, что поршень двигателя, опускаясь в цилиндре вниз, должен всасывать топливно-воздушную смесь, затрачивая на это собственную энергию — вместо того, чтобы отдать эту энергию колесам. Этот побочный эффект прозвали «насосными потерями». И именно «игра» с подачей воздуха и устранением насосных потерь является «фишкой» SOHC i-VTEC.

Принцип действия SOHC i-VTEC гениально прост. На низах дроссельная заслонка остается широко открытой, а система i-VTEC берет на себя регулировку подачи топливно-воздушной смеси.

Рабочей зоной системы SOHC i-VTEC является период, когда дроссельная заслонка полностью открыта, а на подачу воздуха действуют другие силы. В этот период во впускную систему поступает чрезмерно много воздуха, что создаёт избыток топливно-воздушной смеси в цилиндрах. Фишка системы SOHC i-VTEC состоит в том, что один из двух впускных клапанов в цилиндре после фазы впуска закрывается значительно позже второго.

В стандартных двигателях на фазе впуска впускные клапаны открыты, поршень движется вниз к нижней мертвой точке (НМТ). Как только поршень достигает низшей мертвой точки, впускные клапана закрываются, а поршень, начиная фазу сжатия, поднимается к верхней мертвой точке (ВМТ).

Двигатель с SOHC i-VTEC работает иначе. На фазе впуска все как обычно – поршень движется к нижней мертвой точке, впускные клапаны открыты. На фазе сжатия поршень начинает движение вверх к высшей мертвой точке, но! Один из впускных клапанов остается открытым, давая возможность поршню выдавить лишнюю топливно-воздушную смесь, которая беспрепятственно прошла в цилиндр благодаря полностью открытой дроссельной заслонке, обратно в систему впуска.

Конечно, профиль VTEC-ового кулачка, благодаря которому один из клапанов остается дольше открытым, разработан таким образом, что клапан закрывается до встречи с поршнем и в момент, когда в цилиндре остается оптимальное количество топливно-воздушной смеси.

Механизм SOHC i-VTEC

Механизм системы SOHC i-VTEC аналогичен механизму VTEC предыдущих поколений. Все двигатели с системой SOHC i-VTEC имеют два впускных клапана и два выпускных на каждый цилиндр, т.е 16 клапанов на 4 цилиндра. На каждую пару клапанов приходится 3 кулачка – два обычных крайних и один центральный vtec-овый. Кулачки распредвала традиционно воздействуют на клапаны не непосредственно, а через рокеры, которых тоже три на два клапана.

При отключенной системе i-VTEC каждый рокер работает независимо друг от друга. Внешние кулачки обеспечивают открытие клапанов, а центральный кулачок, хотя и вращается вместе с остальными, но до поры до времени работает вхолостую.

Как только двигатель переходит в режим, определяемый системой управления как благоприятный для i-VTEC, посредством давления масла система смещает пистоны внутри рокеров таким образом, что два из трех рокеров превращаются в одну единую конструкцию. До этого работавший вхолостую VTEC-овый кулачок вступает в игру. Теперь один из крайних рокеров начинает работать по законам VTEC-ового кулачка, загоняя один из впускных клапанов цилиндра глубже и на дольше. Практически, как обычный VTEC, с той лишь разницей, что работают системы при разных условиях и в разных фазах.

В обычной VTEC два внешних кулачка отвечают за работу двигателя на низких оборотах, а центральный подключается на высоких оборотах, загоняя в цилиндры как можно больше топливно-воздушной смеси. В «умном» SOHC i-VTEC все наоборот — рабочая зона системы находится в диапазоне от 1000 до 3500 оборотов в минуту. На «верхах» же мотор вступает в стандартный режим работы.

Однако, диапазон оборотов не единственный фактор, по которому система управления двигателем (ECU) определяет момент включения и выключения i-VTEC. SOHC i-VTEC в паре с ECU умеет определять нагрузку на двигатель и в зависимости от ее величины принимать решение, включаться или нет. Т.е. система работает при определенных оборотах двигателя и определенной величине нагрузки на двигатель. Поэтому ECU, определяющая оптимальные условия (красная зона на графике выше), является наиважнейшей составляющей системы в целом.

В целом SOHC i-VTEC направлен на рост экономичности, но без ущерба аппетиту и мощности. Кроме того, в двигателях с системой SOHC i-VTEC применены новые технологии снижения трений, более легкие материалы, что позволило снизить потери и поднять степень сжатия.

i-VTEC VCM (Variable Cylinder Management)

В 2003-м году Honda представила i-VTEC V6 (обновленной J-серии), включающий технологию отключения цилиндров и закрытия клапанов на трех цилиндрах в режимах малой нагрузки и скорости (ниже 80 км/ч). Принцип действия VCM — автоматически отключать «лишние» цилиндры, когда мощности и так достаточно, и тем самым экономить топливо. Данные двигатели способны работать на 3-х, 4-х или всех 6-ти цилиндрах, в зависимости от потребной мощности. Технология была внедрена в США в 2005-м году на минивэне Honda Odyssey, а впоследствии также появилась на Honda Accord Hybrid, Honda Pilot (с 2006-го года) и на обычном Honda Accord (с 2008-го). Также применена в 4-цилиндровом двигателе объема 1.3 литра (Honda Civic Hybrid).

i-VTEC i

Версия i-VTEC с непосредственным впрыском, впервые использована на Honda Stream (2003).

AVTEC

Двигатель AVTEC (Advanced VTEC) был впервые анонсирован в 2006 году. В нем комбинируются технологии непрерывного управления клапанами и непрерывного управления фазами газораспределения. Предполагается освоение данной технологии в ближайшем будущем. Первоначальные планы выпустить AVTEC на модели Honda Accord в 2008-м году реализованы не были.

VTEC TURBO

Двигатели серии VTEC TURBO комбинируют в себе непосредственный впрыск, турбонаддув и технологию VTEC. Эти двигатели были представлены фирмой 19 ноября 2013 года и включают в себя 1-литровый 3-цилиндровый, 1.5-литровый 4-цилиндровый, 2-литровый 4-цилиндровый. Старший двигатель из заявленной линейки предполагается к внедрению на модели Honda Civic Type R и будет соответствовать нормам Euro 6.

Вам также может понравиться...

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *